AC electric field induced dipole-based on-chip 3D cell rotation.
نویسندگان
چکیده
The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.
منابع مشابه
Electro-orientation and electrorotation of metal nanowires.
The physical mechanisms responsible for the electrical orientation and electrical rotation of metal nanowires suspended in an electrolyte as a function of frequency of the applied ac electric field are examined theoretically and experimentally. The alignment of a nanowire in an ac field with a fixed direction is called electro-orientation. The induced constant rotation of a nanowire in a rotati...
متن کاملStudy of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation
Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings th...
متن کاملComprehensive Analysis of Human Cells Motion under an Irrotational AC Electric Field in an Electro-Microfluidic Chip
AC electrokinetics is a versatile tool for contact-less manipulation or characterization of cells and has been widely used for separation based on genotype translation to electrical phenotypes. Cells responses to an AC electric field result in a complex combination of electrokinetic phenomena, mainly dielectrophoresis and electrohydrodynamic forces. Human cells behaviors to AC electrokinetics r...
متن کاملEffect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation
Introduction: Electroporation is a technique for increasing the permeability of the cell membrane to otherwise non-permeate molecules due to an external electric field. This permeability enhancement is detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the pulse strength threshold. In this study, the variabil...
متن کاملThree-Dimensional Interaction of a Large Number of Dense DEP Particles on a Plane Perpendicular to an AC Electrical Field "2279
The interaction of dielectrophoresis (DEP) particles in an electric field has been observed in many experiments, known as the “particle chains phenomenon”. However, the study in 3D models (spherical particles) is rarely reported due to its complexity and significant computational cost. In this paper, we employed the iterative dipole moment (IDM) method to study the 3D interaction of a large num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 14 15 شماره
صفحات -
تاریخ انتشار 2014